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NOMENCLATURE 

a scale factor for length, v/ in. 

b scale factor for tempera ture , v/°F 

k thermal conductivity, Btu/(hr)(in.)(°F) 

q'" time rate of internal heat generation, Btu/(hr)(in. ') 

r radius , in. 

t t empera ture , "F 

Aj-jt a rea normal to heat flux, in .yin . 

Acs cross-sec t ional area normal to current flow 

E voltage gradient, v/ in. 
s 

L linear length, in. 

V volume of tube wall, in-Vl"-

Greek Let ters 

a temperature coefficient of electr ical resist ivi ty, (/.iohm)(in.)/°F 

7 temperature coefficient of thermal conductivity, Btu/(hr)(in.)(°F^) 

p electr ical resist ivi ty, (^ohm)(in.) 

T machine variable representing time 

Subscripts 

0 evaluated at 0°F 

1 inside radius 

2 outside radius 

t indicates temperature dependence 

Superscripts 

' indicates machine variable 





ANALOG COMPUTATION OF TEMPERATURE DISTRIBUTION 
IN SOLIDS WITH ELECTRICAL HEAT-GENERATION 

AND TEMPERATURE-DEPENDENT PROPERTIES 

by 

Darre l G. Harden and Lawrence T. Bryant 

ABSTRACT 

A problem which frequently a r i ses in experimental 
heat transfer work is that of determining the surface tem­
perature of a tube in which heat is generated electrically. 
Solution of this problem involves a temperature measure ­
ment of the opposite surface to which a correction factor, 
the temperature drop through the tube wall, must be applied. 
This temperature drop is obtained through the solution of 
the differential equation governing the temperature distr ibu­
tion in the tube wall; however, in the case of tempera ture-
dependent proper t ies of thermal conductivity and electr ical 
res is t ivi ty , the governing equation is nonlinear, which 
necessi ta tes special solutions. 

In this study a hypothetical surface- temperature 
problem is established, and the solution of the governing non­
linear differential equation is accomplished by means of an 
electronic analog computer. Assuming variable proper t ies , 
the example used in this study is that of a one-dimensional 
s teady-s ta teheat flow through both a thick- and athin-walled 
tube. 

I. INTRODUCTION 

A problem which frequently a r i ses in experimental heat transfer 
work is that of determining the surface temperature of a tube in which 
heat is generated electrically. Solution of this problem involves a tem­
perature measurement of the opposite surface to which a correction 
factor, the temperature drop through the tube wall, must be applied. This 
temperature drop is obtained through the solution of the differential equa­
tion governing the temperature distribution in the tube wall; however, in 
the case of temperature-dependent proper t ies of thermal conductivity and 
electr ical resis t ivi ty, the governing equation is nonlinear, which neces ­
sitates special solutions. 





Jakob(l) presented an analytical solution for the case of a solid 
cylinder in which the thermal conductivity is independent of temperature 
and the electr ical resist ivi ty a linear function of temperature . 

Kreith and Summerfield(2) utilized a ser ies solution, assuming 
that the thermal conductivity and electrical resist ivi ty were linear func­
tions of tempera ture , from which was obtained the overall temperature 
change ac ross a tube wall as a function of an infinite ser ies in ascending 
powers of wall thickness. 

Dickinson and Welch(3) in an application of the Kreith-Summerfield 
solution to a thick-walled tube found it necessary to compute additional 
te rms to assure convergence of the ser ies solution. 

Clark(4) simplified the Kreith-Summerfield solution by showing 
that the se r ies solution could be written as the sum of two functions, the 
first being a geometric function (solution for constant propert ies) and the 
second a function which accounted for variations of thermal proper t ies . 
The utility of this approach is that the influence of variation of the thermal 
property on the temperature drop through the solid can be computed quite 
easily; however, in the ser ies solution, the uncertainties concerning con­
vergence of the s e r i e s , when temperature dependence is important, is still 
in question. 

Stein and Gutstein(5) approached the solution of the differential 
equation by introducing a parameter which gives the effect of the influence 
of the temperature dependence of electr ical conductivity on the tempera­
ture and heat-flux distributions through the solid. They then determined 
the percentage e r ro r in the calculated temperature drop which would resul t 
from neglecting the temperature dependence of electr ical conductivity as 
a function of the parameter . The generalization was made that, if the tem­
perature drop is computed from the surface heat flux and if the tempera­
ture dependence of electr ical conductivity is neglected, the resulting e r ro r 
in the temperature drop will be less than 5%, even though the electr ical 
conductivity may change by 25%. For most meta ls , a change in electr ical 
conductivity of this magnitude requires temperature changes of the order 
of hundreds of degrees. It was concluded that only in unusual cases would 
it be necessary to account for the temperature dependence of electr ical 
conductivity. For the unusual case , an incremental procedure for calcu­
lating the tempera ture distribution was presented, which is based on 
exact integrations of the heat-conduction equation over small increments 
of solid thicknesses in which it is assumed that the temperature dependence 
of e lectr ical conductivity is negligible. 

More recently, the se r ies solution(^) was reviewed by Bergles and 
Rohsenow.(^) They discuss the use of a guard heater to insure an adiabatic 
outer surface. The resul ts from the se r ies solution presented show a 





larger temperature drop for higher surface temperature . It appears that 
these resul ts do not agree with previously published resul ts or with the 
resul ts of this study. 

Analog Computer Solutions 

The solution of the nonlinear differential equation by the use of an 
analog computer eliminates the uncertainties concerning convergence of 
a se r ies solution. With the use of the analog computer, the approximations 
made in the Stein-Gutstein(5) incremental method would not be necessary. 
Moreover, the effect of a nonadiabatic boundary condition can be studied 
quite easily with the analog, since this is one of the initial conditions of 
the problem. 

II. EQUATION DEVELOPMENT 

The flow of heat in a hollow cylinder (Fig. l) , long enough so that 
end heat losses can be considered negligible, is one dimensional. In Fig. 1 
the heat flux entering the shaded volume element dV is - ktA(dt/dr); the 
heat generation in the volume is q"'dV; and the rate of heat transfer at 
r + dr is 

-.-£ Sr 
ktA dry dr 

BOUNDARY CONDITIONS 

= 0 t = t 
dr 

dt 
7r 0 t = t 

Fig. 1. Cross Section of Heater Tube 
with Boundary Conditions 

The energy balance becomes 

dt 
- k t A ^ + q l " A d r = I" kjA - + ^ 

dt k^Af )dr (1) 





In Eq. (1) substituting A = 27Tr per unit length and dropping the part ial 
derivative notation, since t is a function of r only, one obtains 

I d / dt 
7 Tr [^^' -r 

Performing the indicated differentiation, Eq. (2) becomes 

1 vi^)-.fe)-(£)(¥ + q - = 0 

(2) 

(3) 

At this point it is necessary to specify the relationship between k 
and t. If a l inear variation of the form 

kt = ko[l + 7t] 

is specified, then 

dkt _ /dkA /dt 
dr " \ dt / \dr, ko7 

Substituting Eq. (5) into Eq. (3) gives 

^4fe)*^'(f'1^-

(4) 

(5) 

(6) 

dr" ^ \ "V '̂ t \ "V '"t 

This is the equation describing the temperature distribution when 
kj is a l inear function of temperature . When the internal heat generation 
is by means of res is tance heating, the volumetric heat generation is given 
by 

— (3.413) Btu/(watt)(hr) 
RV 

(7) 

where 

R = P L / A C S 

If the electr ical resist ivi ty p is a linear function of t, for example 

p = Po[l + at] 

then substituting for p in Eq. (7) and for q'" in Eq. (6) resul ts in 

d't ^ i f ^ ^ 7 /dt_y E^(3.413) 
T ; ^ ^ r Vdr; ^ (1 + 7t) Vdr/ '' [Po(l + at)L/Acs]Vko( 1 + 7t) 

= 0 . (8) 





Since 

and 

L = unit length 

Eq. (8) can be reduced to 

1' 
dr 

t 1 /dtN 7 (dt_ 
1 "̂  r Vdr/ ^ (1 + 7t) Vdr 

E^(3.413) 
Po(l + at)ko(l + 7t) 

(9) 

If k and p a re considered constant and evaluated at some reference 
tempera ture , then Eq. (2) can be written as 

d t̂ J _ / ^ ' \ E^(3.413) ^ Q 
dr2 "̂  r Idr i "̂  pk 

(10) 

III. ANALOG EQUATION TRANSFORMATION 

The transformation of Eqs. (9) and (10) into a form suitable for 
analog representat ion is made by the following substitutions: 

r = T: T' = aT; t' = bt 

Thus, 

_dt_ _ d(t ' /b) ^ a_ fdt'^ 
d7 " d(T'/a) " b \̂ dT 

dh ^ d 
dr2 d(T'/a) 

a dt' 
b dT' mm • 

Making the substitution into 
obtains 

Eqs. (9) and (lO) and multiplying by b/a^, one 

d f V h_( E'(3.413) y 
+ — ' d F J + [1 +(7/b)t ' Jb \^) • ' a ^ W l + ( a t ' / b ) J k „ l l + ( 7 t V b j V 

dn' J /dt 
dT'2 '^ T 

7 

and 

d't' ^ 1 /dt^\ b /: E^(3.413) 
pk 

(11) 

(12) 





To assign the scale factors it is necessary to determine the maxi­
mum ranges of the var iables . The maximum temperature expected is 
600''F. The maximum tube size is 0.50 in. radius . Then, 

t'(0) = bt(0); 100 V = b(600°F); b = l / lO v/°F 

and T'(0) = aT(0); 100 v = a(0.50in.) ; a = 1 x 1 0 ^ v/in. 

Introducing these values of a and b into Eqs. (11) and (12) and introducing 
values(3) of electr ical resist ivity and thermal conductivity from Fig. 2, 

dH' 

dT' 

1 /d t (0.00517) /dt 
,2" T' VdT'y (1 + 0.005171') \dT 

1 

10^ 

E^(3.413) 
P(,(l + 0.0062t')ko(l + 0.00517t'; 

(13) 

and 

d^t' 
dT'^ 

J_ I— 
~ VdT 

1 
To5 

E 2 ( 3 . 4 1 3 ) 

pk 
(14) 

The analog circuit diagrams for Eqs. (13) and (14) are shown in Figs. 3 
and 4. The potentiometer settings for these figures are listed in Tables 1 
and 2. 
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Thermal Conductivity and Electr ical 
Resistivity Versus Temperature for 
Type 304 Stainless Steel 
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Fig. 3. Analog Diagram of Solution for Case of Constant Thermal and Electr ical Conductivity 
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POTENTIOMETER SETTINGS 
(see Fig. 3) 

Potent iometer No. 

Fig. 3 

1 

2 

3 

5 

21 

22 

Machine 

1 

2 

3 

5 

21 

22 

Mathematical Value 

t j o r t j 

outside radius 

inside radius 

(3.413/pk)E'(b/a^) 

l/lOO 

l/lOO 

Value 

4650 

paramete r 

0.01 

0.01 

Setting 

-5000 

-4650 

0100 

0100 

t' = bt; t s 1000 

b = 0.1 v/°F 

POTENTIOMETER SETTINGS 
(see Fig. 4) 

Potent iometer No. 

Fig. 4 

1 

2 

4 

3 

5 

7 

34 

22 

35 

24 

33 

Machine 
Mathen:iatical Value 

t, or tj = 600 
= 300 

^ 2 

! • ! 

b 70 X 70 X 3 .413 E^ 

(pk)„ X l O - ' _ 

t̂  or t^ 

70 7/b 

70 a/b 

7 0 Vb 

0.01 

0.01 

0 .362 

0 .434 

0 .362 

0 .01 

0 .01 

Se t t ing 

- 6 0 0 0 
- 3 0 0 0 

+7000 

- 5 0 0 0 

- 4 6 5 0 

3620 

4340 

3620 

0100 

0100 

b = 0.1 

7 = 0 .000517 

a = 0 .00062 
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IV. DISCUSSION OF RESULTS 

The resul ts of the computer solutions for the cases of heat flux 
through the inner and outer surfaces of both thick- and thin-walled l- in.-OD 
tubing are shown in Figs . 5 and 6. Figure 5 shows that the effect of va r i ­
able proper t ies on the thin-walled tube studied does not become important 
until the tempera ture drop through the tube wall reaches or exceeds ap­
proximately 70°F. Comparison of the curves of Fig. 5 indicates that the 
higher the initial wall t empera ture , the lower the temperature drop 
through the wall. Figure 6 shows the resul ts for the thick-walled tube. 
It should be noted that the effect of initial surface temperature has a much 
grea ter effect on the temperature drop for the thick-walled tube than for 
the thin-walled tube. Figure 6 (for tj = 300''F) also shows that an adiabatic 
inside or outside tube wall has only a negligible effect on the temperature 
drop ac ross the tube wall. 

In applying the se r ies solution to this problem, Clark(4) showed 
that, when the variation of proper t ies could be neglected, the temperature 
drop was a linear function of the heat flux. This is shown in Figs. 5 and 6 
along with the var iable-proper ty solution. It is evident from examining 
Figs. 5 and 6 that the effect of variation of the thermal property becomes 
more pronounced in the thick-walled tube with the attendant greater tem­
perature drop. 

V. CONCLUSIONS 

This study has shown the analog solution of the temperature dis­
tribution in an electrically heated tube to be flexible in its application. The 
question of convergence in the se r ies solution is not encountered with the 
analog solution. By means of the analog solution the boundary conditions 
at the two surfaces can be changed quite easily and, in par t icular , the in­
fluence of a nonadiabatic boundary can be investigated. 

When the assumption of constant proper t ies can be made, it is 
recommended that Clark's(4) constant-property solution be used to calcu­
late the tempera ture drop at one heat flux. Then, since the temperature 
drop is a linear function of the heat flux, all other tempera tures can be 
read from a plot of the tempera ture drop versus the heat flux. 
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Fig 5 Comparison of the Temperature Drop across a Thin-walled Tube for the 
Constant and Variable Property Cases at t 
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Fig. 6. Comparison of the Temperature Drop across a Thick-walled Tube for 
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